The 2 - adic Eigencurve is Proper

نویسندگان

  • Kevin Buzzard
  • Frank Calegari
چکیده

In [7], Coleman and Mazur construct a rigid analytic space E that parameterizes overconvergent and therefore classical modular eigenforms of finite slope. The geometry of E is at present poorly understood, and seems quite complicated, especially over the centre of weight space. Recently, some progress has been made in understanding the geometry of E in certain examples (see for example [3],[4]). Many questions remain. In this paper, we address the following question raised on p5 of [7]:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Eigencurve is Proper at Integral Weights

The eigencurve E is a rigid analytic space parameterizing overconvergent and therefore classical modular eigenforms of finite slope. Since Coleman and Mazur’s original work [10], there have been numerous generalizations [4, 6, 14], as well as alternative constructions using modular symbols [1] and p-adic representation theory [12]. In spite of these advances, several elementary questions about ...

متن کامل

Local to Global Compatibility on the Eigencurve

We generalise Coleman’s construction of Hecke operators to define an action of GL2(Ql) on the space of finite slope overconvergent p-adic modular forms (l 6= p). In this way we associate to any Cp-valued point on the tame level N Coleman-Mazur eigencurve an admissible smooth representation of GL2(Ql) extending the classical construction. Using the Galois theoretic interpretation of the eigencur...

متن کامل

Iwasawa theory of overconvergent modular forms, I: Critical-slope p-adic L-functions

We construct an Euler system of p-adic zeta elements over the eigencurve which interpolates Kato’s zeta elements over all classical points. Applying a big regulator map gives rise to a purely algebraic construction of a two-variable p-adic L-function over the eigencurve. As a first application of these ideas, we prove the equality of the p-adic L-functions associated with a critical-slope refin...

متن کامل

THE HALF-INTEGRAL WEIGHT EIGENCURVE by

— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which Up2 is moreover compact. The modules of families of forms are used to construct an eigencurve p...

متن کامل

On the Eigencurve at Classical Weight One Points

We show that the p-adic Eigencurve is smooth at classical weight one points which are regular at p and give a precise criterion for etaleness over the weight space at those points. Our approach uses deformations of Galois representations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006